一文读懂直流电机控制算法

发布时间:2024-01-17 14:14:19   来源:江南体育官方网站

  通常我们在控制小车运动的时候不知道怎么精确的对小车轨迹来控制。在不懂得小车控制算法精髓的时候,我们是无法对小车进行精确的控制的。目前绝大多数小车都是用PID控制算法来实现对小车的运动控制的。现在很多玩家就只知道一种调节方法,就是比例调节,即向左偏就向右调节,向右偏就向左调节,最容易想到,也是最容易用软硬件实现的,但是结果也是最容易出问题的。当时的感觉就是小车太灵敏了,忽左忽右,不是很稳定。后来查了资料后知道了其他的调节方式。

  电机控制算法的作用是接受指令速度值,通过运算向电机提供适当的驱动电压,尽快地和尽快平稳地使电机转速达到指令速度值,并维持这个速度值。换言之,一旦电机转速达到了指令速度值,即使在各种坏因(如斜坡、碰撞之类等使电机转速发生明显的变化的因素)的干扰下也应保持速度值不变。为了更好的提高机器人小车控制管理系统的控制精度,选用合适的控制算法显得十分必要。控制算法是任何闭环系统控制方案的核心,然而并非越复杂、精度越高的算法越好,因为比赛要求非常高的实时性,机器人必须在非常短的时间内作出灵敏的反应,所以现代的一些先进控制算法,比如模糊控制、神经元网络控制等就不可以应用到小车控制管理系统里。本系统选用了最常规、最经典的PID控制算法,通过实际应用取得了很好的效果。下图是PID控制原理结构图。

  控制回路中的第一个偏差转换环节就是比例项。这一环节简单地将偏差信号乘以常数K 得到新的CV值(值域为-100~100)。基本的比例控制算法如下:

  上一段程序中的SetPWM()函数并非将CV值作为绝对的PWM占空比来对待。否则,不断降低的偏差值会使输出值接近零,而且由于电机工作时需要持续的PWM信号,控制管理系统将会使电机稳定在低速运转状态上,因此导致控制管理系统策略失败。

  相反,CV值一般被取作当前PWM占空比的改变量,并被附加到当前的PWM占空比上。这也要求SetPWM()函数必须将相加后得到的PWM占空比限制在0%~100%。正的CV值将使电机两端电压增加。负的CV值将使电机两端电压降低。如果CV值等于0,则无需改变但前占空比。较低的K 值会使电机的速度响应缓慢,但是却很平稳。较高的K 值会使速度响应更快,但是却可能会引起超调,即达到稳定输出前在期望值附近振荡。过高的K 值会导致系统的不稳定,即输出不断震荡且不会趋于期望值。

  积分正好与微分相对。假如有一个描述变化率(微分)的表达式,那么对该表达式的积分就将得到随时间变化的原物理量。如加速度的积分是速度,速度的积分是位移。

  在PID控制回路中,偏差的积分代表从控制开始时算起所有偏差积累的总和。该总和被常数K 所乘后再添加到回路输出中。在回路中,假如没有积分环节,尽管控制管理系统也会趋于稳定,但是由于某一些原因输出值可能最终也无法达到SP值。

  由于积分项会慢慢的变大,这就会使控制回路在SP值的改变时响应变慢,某些应用场合在CV值达到取值边界(如为:-100~100)时会停止累加Isum。在SP值改变时,也可以除去Isum项。

  任何变量的微分项被用来描述该变量是如何相对于另一个变量(多位时间)变化的。换句话说,任何变量的微分项就是它随时间的变化率。如位移随时间的变化率是速度。速度相对于时间的微分是加速度。

  在PID控制器中,值得关心的是偏差信号相对于时间的微分,或称变化率。绝大多数控制器将微分项定义为:

  式中,E为当前偏差,E 为前次偏差值,T为两次测量的时间间隔。负的变化率表明偏差信号的改善。当微分项被具体应用于控制器中时,将一个常数乘以该微分项,并将它加到比例项上,就能够获得最终的CV值计算公式:

  当偏差信号接近零时,CV值将为负,所以当偏差信号开始改善时,微分项的作用将逐渐减弱校正输出量。在某一些场合下,微分项还有利于超调量的消除,并可以允许使用较大的K 值,从而能够改善响应的快速性。微分环节还预示了偏差信号的变化趋势。当控制对象对控制器的输出响应迟缓时,微分环节的作用尤为明显。

  在整定PID控制器参数时,能够准确的通过控制器的参数与系统动态性能和稳态性能之间的定性关系,用实验的方法来调节控制器的参数。有经验的调试人员通常能较快地得到较为满意的调试结果。在调试中最重要的问题是在系统性能不能令人满意时,知道应该调节哪一个参数,该参数应该增大还是减小。

  为了减少需要整定的参数,首先能够使用PI控制器。为了能够更好的保证系统的安全,在调试开始时应设置比较保守的参数,例如比例系数不要太大,积分时间不要太小,以防止系统不稳定或超调量过大的不正常的情况。给出一个阶跃给定信号,根据被控量的输出波形能够得到系统性能的信息,例如超调量和调节时间。应根据PID参数与系统性能的关系,反复调节PID的参数。

  如果阶跃响应的超调量太大,经过多次振荡才能稳定或者根本不稳定,应减小比例系数、增大积分时间。如果阶跃响应没有超调量,但是被控量上升过于缓慢,过渡过程时间太长,应按相反的方向调整参数。

  反复调节比例系数和积分时间,如果超调量仍然较大,能加入微分控制,微分时间从0逐渐增大,反复调节控制器的比例、积分和微分部分的参数。

  总之,PID参数的调试是一个综合的、各参数互相影响的过程,实际调试过程中的多次尝试是很重要的,也是必须的。

  试凑法就是人工选择PID参数,使控制管理系统响应达到预定要求,这种方法既简单又复杂,说简单是,如果你有经验和运气的话,那么在SIMULINK中,可能很快就达到了目标,说难的是,在现场实战中,可能费了很大时间和精力来调整三个参数,也没有完成任务。

  临界比例度法就是仅在P作用下,调整比例度使系统等幅振荡,然后根据公式算出PID值,效果如图1所示,图中左半部分是系统等幅振荡,右半部分是控制效果。下图是通过MATLAB仿真的PID临界比例度法控制的曲线 PID临界比例度法控制的曲线)衰减曲线法

  衰减曲线法 就是仅在P作用下,调整比例度使系统响应曲线比率衰减,然后根据公式算出PID值,效果如图2所示,图中左半部分是系统衰减曲线,右半部分是控制效果。下图是通过MATLAB 仿真的PID衰减曲线法控制的曲线 PID衰减曲线)反应曲线法

  反应曲线法就是在开环状态下,加阶跃信号,然后用一阶加纯滞后系统逼近原系统,然后根据由Z-N或C-C公式算出PID值,效果如图3所示,图中左半部分是系统 响应曲线 , 右半部分是控制效果。图4是一个三阶系统,临界比例度法 求得的有关参数。下图是通过MATLAB 仿真的PID反应曲线法控制的曲线 PID反应曲线法控制的曲线

  继有刷直流电机的旋转原理和发电原理之后,我们将在本文中介绍有刷直流电机短路制动。因为这也是有刷直流电机一系列的工作原理之一。 对于有刷直流电机,可以使电刷之间短路以施加制动,从而在电源关断后快速停止因惯性而旋转的转子。 在电刷断开电源并且线圈(转子)仍沿逆时针方向旋转的状态下,将电刷之间短路。 在①的状态下,如上一篇发电原理中所述,左电刷相对于右电刷会产生(+)电动势,所以会因电刷短路而有电流流过。结果,线圈A的外侧变为N,线圈B和线圈C的外侧变为S。 在过渡到②状态后也同样有电流流过,线圈B的外侧变为S,线圈A和线圈C的外侧变为N。 当以这种方式使有刷直流电机电刷之间短路时,会

  短路制动 /

  无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 无刷电机是指无电刷和换向器(或集电环)的电机,又称无换向器电机。早在十九纪诞生电机的时候,产生的实用性电机就是无刷形式,即交流鼠笼式异步电动机,这种电动机得到了广泛的应用。但是,异步电动机有许多无法克服的缺陷,以致电机技术发展缓慢。上世纪中叶诞生了晶体管,因而采用晶体管换向电路代替电刷与换向器的直流无刷电机就应运而生了。这种新型无刷电机称为电子换向式直流电机,它克服了第一代无刷电机的缺陷。 无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品,具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能,具有可靠性高,稳定性高,适应性强

  的三相全桥驱动电路 /

  如何将直流电机连接到8051单片机?在本文中,主要有8051单片机+DC电机系统两个部分。首先是带有控制电机所需程序的8051单片机,其次是合适的驱动电路。 大多数直流电机的功率要求远远超出了单片机的范围,而且在反转旋转方向时产生的电压尖峰更容易损坏单片机。因此将直流电机直接连接到单片机是不明智的,完美的解决方案是在单片机和直流电机之间使用电机驱动电路。 一、L293电机驱动芯片 L293是一款专用的H桥电机驱动器IC,采用16引脚封装。L293的电流容量为600mA/通道,电源电压范围为4.5至36VDC。它们配有内部高速钳位二极管,用于电感尖峰保护。L293的其他优点包括高抗噪性、内部ESD保护、热关断、每个通道的独立

  1 EM78P447S的主要特征 EM78系列单片机是台湾义隆电子股份有限公司采用CMOS工艺制造的8位超高的性价比单片机。该系列单片机一般都内置看门狗计数器(WDT)、RAM、ROM、可编程定时/计数器、预分频器以及5层堆栈。该系列器件的绝大部分指令只需两个振荡周期,同时具有内外部中断、低电压检测复位、可编程I/0、内部上拉电阻和集电极开路输出、SLEEP方式等功能。另外,EM78P447S单片机还具有编程简单、速度快、功耗小、成本低等优点,能大范围的应用于玩具、家电、工业控制等方面。 EM78P447S的主要性能特点如下: ●工作电压范围:2.5-5.5V; ●允许温度范围:0-70°C; ●工作频率范围: 石英振荡型:5

  1、前言 随着汽车部件的电动化、自动化程度逐步的提升和对汽车电机的噪声、电磁兼容、效率的高要求,永磁无刷直流电机正在慢慢地替代有刷的永磁直流电机 。永磁无刷电机具有体积小、寿命长、效率高、结构相对比较简单、可靠性好等优点,利用它作为汽车部件的驱动执行元件可有效地提高汽车部件的性能。例如在Freightliner公司的M2系列商务车上,采用无刷电机驱动其空调系统的鼓风机,更好地调节了送风速度 。 由于汽车总线技术的日趋成熟,汽车内多个电机单元的控制方式正从传统的集中式线束控制向分布式总线控制转变。分布式总线控制能够大大减少线束,减少相关成本,便于各个电机控制单元和车内其它电控单元一起形成一个综合协调的控制管理系统,提高各控制单元的运行可靠

  控制器设计 /

  直流伺服电机是由四个主要部件组成的组件,即直流电机、位置传感装置、齿轮组件和控制电路。直流电机的所需速度取决于所施加的电压。为了控制电机速度,电位器产生一个电压,该电压被施加到误差放大器的输入之一。 直流伺服电机工业原理 在一些电路中,控制面板用于产生与电机所需位置或速度相对应的直流参考电压,并将其应用于带电压转换器的脉冲。脉冲的长度决定了施加到误差放大器上的电压作为所需电压,以产生数字控制 PLC 或任何别的设备所需的速度或位置。 反馈传感器通常是电位器,它们通过齿轮机构产生与电机轴绝对角度相对应的电压。反馈电压值施加在输入误差比较器放大器上,将由电位计反馈产生的电机当前位置产生的电压与电机所需位置产生的电压进行比较,以

  最近刚做了智能小车的寻迹实验,实验中用了定时器PWM输出来改变直流电机的转速,我在这里就大致总结一下PWM相关的知识。 什么是PWM? PWM(Pulse Width Modulation)脉冲宽度调制。 占空比:pwm占空比就是一个脉冲周期内有效电平在整个周期所占的比例。 通过调节PWM的占空比就能调节IO口上电压的持续性变化,因此也能够控制外设的功率进行持续性变化,也就能控制直流电机的转速快慢。 那么重点就在于如何调节PWM波形的输出。如下图所示 图中的ARR是我们给定时器的一个预装载值,CCRx的上下变化是产生PWM波的关键。我们假设ARR大于CCRx的部分输出为高电平(即t1-t2、t3-t4、t5-t6),ARR

  变速 /

  以单相电机为例。首先来说,直流电机与交流电机都是电机的一种,都是由于磁场的作用产生运转。而直流又可以看成是步进电机的一种。那么在原理上有啥不一样的区别呢? 交流电机和直流电机的不同之处在于它们的电源和工作原理: 1. 电源:交流电机工作的电源是交流电源,而直流电机工作的电源是直流电源。 2. 工作原理:交流电机是利用交流磁场产生转矩运动,而直流电机则是利用电枢和永磁体之间的磁场产生转矩。 3. 调速性能:交流电机能够最终靠变频器控制改变频率来实现调速,而直流电机能够最终靠改变电源电压的方式来实现调速。 4. 维护成本:交流电机常常要更少的维护,而直流电机常常要更多的维护和更换部件的成本更高。 电机结构不同:直流电动机一般有电刷还有换

  技术 第2版 谭建成编著

  .pd

  ADI世健工业嘉年华——深度体验:ADI伺服电机控制方案

  解锁【W5500-EVB-Pico】,探秘以太网底层,得捷电子Follow me第4期来袭!

  龙芯中科宣布从芯联芯 MIPS 技术许可官司大战中获胜,获赔仲裁费用至多 4147.66 万元人民币

  1 月 17 日消息,龙芯中科与芯联芯之间持续了近三年之久的MIPS技术许可合同纠纷大战日前迎来结局 龙芯大获全胜。IT之家注意到,龙 ...

  有人说,2023年是经济下行的一年有人说,2023年是充满挑战的一年也有人说,2023年是充满希望的一年于米尔来说2023年是砥砺奋进的一年这一年 ...

  Ceva 联同汽车和边缘AI领域全新合作伙伴, 扩展业界领先 NPU IP 的人工智能生态系统

  Visionary ai公司用于增强相机应用的神经网络软件 ISP 和 ENOT ai公司神经网络优化工具及人工智能辅助工具现可用于 Ceva 的 NeuPro-M ...

  瑞萨推出带有增强外设的RZ/G3S 64位微处理器, 应用于物联网边缘和网关设备

  新产品具有低至10µW的超低待机功耗和Linux快速启动功能2024 年 1 月 16 日,中国北京讯 - 全球半导体解决方案供应商瑞萨电子今日宣 ...

  网络视频传输协议有哪些,RTSP/RTMP/SRT/RTP之间特点下面详细的介绍:RTP协议(Real-time Transport Protocol)是一个网络传输协议,是 ...

  网站地图最新更新手机版站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP

  总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科词云:

LX-43AC  ComExpress龙芯3A2000主板模块LX-43AC  ComExpress龙芯3A2000主板模块